Copied to
clipboard

G = C24.45D6order 192 = 26·3

34th non-split extension by C24 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.45D6, C6.282+ 1+4, (C2×D4)⋊6D6, C22⋊C47D6, C22≀C26S3, C232D66C2, (C2×Dic3)⋊8D4, (C6×D4)⋊9C22, Dic3⋊D414C2, D6⋊D410C2, C123D412C2, C244S37C2, D6⋊C413C22, Dic3.4(C2×D4), C6.58(C22×D4), C22.41(S3×D4), C23.14D64C2, (C2×D12)⋊20C22, (C2×C12).30C23, (C2×C6).136C24, C2.30(D46D6), Dic3⋊C411C22, C32(C22.29C24), (C4×Dic3)⋊16C22, (C2×Dic6)⋊21C22, C23.16D63C2, (C23×C6).69C22, (C22×C6).10C23, C23.11D613C2, C6.D416C22, (S3×C23).44C22, (C22×S3).55C23, C22.157(S3×C23), C23.119(C22×S3), (C2×Dic3).61C23, (C22×Dic3)⋊15C22, C2.31(C2×S3×D4), (S3×C2×C4)⋊9C22, (C2×C6).55(C2×D4), (C3×C22≀C2)⋊7C2, (C2×D42S3)⋊7C2, (C2×C3⋊D4)⋊9C22, (C22×C3⋊D4)⋊10C2, (C3×C22⋊C4)⋊7C22, (C2×C4).30(C22×S3), SmallGroup(192,1151)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C24.45D6
C1C3C6C2×C6C22×S3S3×C23C232D6 — C24.45D6
C3C2×C6 — C24.45D6
C1C22C22≀C2

Generators and relations for C24.45D6
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=1, f2=d, ab=ba, eae-1=faf-1=ac=ca, ad=da, bc=cb, ebe-1=bd=db, fbf-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=de-1 >

Subgroups: 1008 in 334 conjugacy classes, 103 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C24, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×S3, C22×C6, C22×C6, C22×C6, C42⋊C2, C22≀C2, C22≀C2, C4⋊D4, C4.4D4, C41D4, C22×D4, C2×C4○D4, C4×Dic3, Dic3⋊C4, D6⋊C4, C6.D4, C6.D4, C3×C22⋊C4, C3×C22⋊C4, C2×Dic6, S3×C2×C4, C2×D12, D42S3, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C2×C3⋊D4, C6×D4, C6×D4, S3×C23, C23×C6, C22.29C24, C23.16D6, D6⋊D4, Dic3⋊D4, C23.11D6, C232D6, C23.14D6, C123D4, C244S3, C3×C22≀C2, C2×D42S3, C22×C3⋊D4, C24.45D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C22×S3, C22×D4, 2+ 1+4, S3×D4, S3×C23, C22.29C24, C2×S3×D4, D46D6, C24.45D6

Smallest permutation representation of C24.45D6
On 48 points
Generators in S48
(2 32)(4 34)(6 36)(8 18)(10 14)(12 16)(20 40)(22 42)(24 38)(26 48)(28 44)(30 46)
(1 17)(2 44)(3 13)(4 46)(5 15)(6 48)(7 31)(8 24)(9 33)(10 20)(11 35)(12 22)(14 40)(16 42)(18 38)(19 29)(21 25)(23 27)(26 36)(28 32)(30 34)(37 43)(39 45)(41 47)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 17)(8 18)(9 13)(10 14)(11 15)(12 16)(19 39)(20 40)(21 41)(22 42)(23 37)(24 38)(25 47)(26 48)(27 43)(28 44)(29 45)(30 46)
(1 37)(2 38)(3 39)(4 40)(5 41)(6 42)(7 27)(8 28)(9 29)(10 30)(11 25)(12 26)(13 45)(14 46)(15 47)(16 48)(17 43)(18 44)(19 33)(20 34)(21 35)(22 36)(23 31)(24 32)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6 37 42)(2 41 38 5)(3 4 39 40)(7 16 27 48)(8 47 28 15)(9 14 29 46)(10 45 30 13)(11 18 25 44)(12 43 26 17)(19 20 33 34)(21 24 35 32)(22 31 36 23)

G:=sub<Sym(48)| (2,32)(4,34)(6,36)(8,18)(10,14)(12,16)(20,40)(22,42)(24,38)(26,48)(28,44)(30,46), (1,17)(2,44)(3,13)(4,46)(5,15)(6,48)(7,31)(8,24)(9,33)(10,20)(11,35)(12,22)(14,40)(16,42)(18,38)(19,29)(21,25)(23,27)(26,36)(28,32)(30,34)(37,43)(39,45)(41,47), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,17)(8,18)(9,13)(10,14)(11,15)(12,16)(19,39)(20,40)(21,41)(22,42)(23,37)(24,38)(25,47)(26,48)(27,43)(28,44)(29,45)(30,46), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,45)(14,46)(15,47)(16,48)(17,43)(18,44)(19,33)(20,34)(21,35)(22,36)(23,31)(24,32), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,16,27,48)(8,47,28,15)(9,14,29,46)(10,45,30,13)(11,18,25,44)(12,43,26,17)(19,20,33,34)(21,24,35,32)(22,31,36,23)>;

G:=Group( (2,32)(4,34)(6,36)(8,18)(10,14)(12,16)(20,40)(22,42)(24,38)(26,48)(28,44)(30,46), (1,17)(2,44)(3,13)(4,46)(5,15)(6,48)(7,31)(8,24)(9,33)(10,20)(11,35)(12,22)(14,40)(16,42)(18,38)(19,29)(21,25)(23,27)(26,36)(28,32)(30,34)(37,43)(39,45)(41,47), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,17)(8,18)(9,13)(10,14)(11,15)(12,16)(19,39)(20,40)(21,41)(22,42)(23,37)(24,38)(25,47)(26,48)(27,43)(28,44)(29,45)(30,46), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,45)(14,46)(15,47)(16,48)(17,43)(18,44)(19,33)(20,34)(21,35)(22,36)(23,31)(24,32), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,16,27,48)(8,47,28,15)(9,14,29,46)(10,45,30,13)(11,18,25,44)(12,43,26,17)(19,20,33,34)(21,24,35,32)(22,31,36,23) );

G=PermutationGroup([[(2,32),(4,34),(6,36),(8,18),(10,14),(12,16),(20,40),(22,42),(24,38),(26,48),(28,44),(30,46)], [(1,17),(2,44),(3,13),(4,46),(5,15),(6,48),(7,31),(8,24),(9,33),(10,20),(11,35),(12,22),(14,40),(16,42),(18,38),(19,29),(21,25),(23,27),(26,36),(28,32),(30,34),(37,43),(39,45),(41,47)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,17),(8,18),(9,13),(10,14),(11,15),(12,16),(19,39),(20,40),(21,41),(22,42),(23,37),(24,38),(25,47),(26,48),(27,43),(28,44),(29,45),(30,46)], [(1,37),(2,38),(3,39),(4,40),(5,41),(6,42),(7,27),(8,28),(9,29),(10,30),(11,25),(12,26),(13,45),(14,46),(15,47),(16,48),(17,43),(18,44),(19,33),(20,34),(21,35),(22,36),(23,31),(24,32)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6,37,42),(2,41,38,5),(3,4,39,40),(7,16,27,48),(8,47,28,15),(9,14,29,46),(10,45,30,13),(11,18,25,44),(12,43,26,17),(19,20,33,34),(21,24,35,32),(22,31,36,23)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D···6I6J12A12B12C
order122222222222344444444446666···66121212
size111122444121212244466661212122224···48888

36 irreducible representations

dim11111111111122222444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D62+ 1+4S3×D4D46D6
kernelC24.45D6C23.16D6D6⋊D4Dic3⋊D4C23.11D6C232D6C23.14D6C123D4C244S3C3×C22≀C2C2×D42S3C22×C3⋊D4C22≀C2C2×Dic3C22⋊C4C2×D4C24C6C22C2
# reps11122122111114331224

Matrix representation of C24.45D6 in GL6(𝔽13)

1200000
0120000
001010
000101
0000120
0000012
,
100000
0120000
002929
00411411
0000114
000092
,
100000
010000
0012000
0001200
0000120
0000012
,
1200000
0120000
0012000
0001200
0000120
0000012
,
0120000
1200000
0001200
0011200
000201
00112121
,
0120000
100000
00120120
00121121
002010
00211112

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,12,0,0,0,0,1,0,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,2,4,0,0,0,0,9,11,0,0,0,0,2,4,11,9,0,0,9,11,4,2],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,11,0,0,12,12,2,2,0,0,0,0,0,12,0,0,0,0,1,1],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,12,12,2,2,0,0,0,1,0,11,0,0,12,12,1,1,0,0,0,1,0,12] >;

C24.45D6 in GAP, Magma, Sage, TeX

C_2^4._{45}D_6
% in TeX

G:=Group("C2^4.45D6");
// GroupNames label

G:=SmallGroup(192,1151);
// by ID

G=gap.SmallGroup(192,1151);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,219,675,297,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=1,f^2=d,a*b=b*a,e*a*e^-1=f*a*f^-1=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^-1>;
// generators/relations

׿
×
𝔽