metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.45D6, C6.282+ 1+4, (C2×D4)⋊6D6, C22⋊C4⋊7D6, C22≀C2⋊6S3, C23⋊2D6⋊6C2, (C2×Dic3)⋊8D4, (C6×D4)⋊9C22, Dic3⋊D4⋊14C2, D6⋊D4⋊10C2, C12⋊3D4⋊12C2, C24⋊4S3⋊7C2, D6⋊C4⋊13C22, Dic3.4(C2×D4), C6.58(C22×D4), C22.41(S3×D4), C23.14D6⋊4C2, (C2×D12)⋊20C22, (C2×C12).30C23, (C2×C6).136C24, C2.30(D4⋊6D6), Dic3⋊C4⋊11C22, C3⋊2(C22.29C24), (C4×Dic3)⋊16C22, (C2×Dic6)⋊21C22, C23.16D6⋊3C2, (C23×C6).69C22, (C22×C6).10C23, C23.11D6⋊13C2, C6.D4⋊16C22, (S3×C23).44C22, (C22×S3).55C23, C22.157(S3×C23), C23.119(C22×S3), (C2×Dic3).61C23, (C22×Dic3)⋊15C22, C2.31(C2×S3×D4), (S3×C2×C4)⋊9C22, (C2×C6).55(C2×D4), (C3×C22≀C2)⋊7C2, (C2×D4⋊2S3)⋊7C2, (C2×C3⋊D4)⋊9C22, (C22×C3⋊D4)⋊10C2, (C3×C22⋊C4)⋊7C22, (C2×C4).30(C22×S3), SmallGroup(192,1151)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.45D6
G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=1, f2=d, ab=ba, eae-1=faf-1=ac=ca, ad=da, bc=cb, ebe-1=bd=db, fbf-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=de-1 >
Subgroups: 1008 in 334 conjugacy classes, 103 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C24, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×S3, C22×C6, C22×C6, C22×C6, C42⋊C2, C22≀C2, C22≀C2, C4⋊D4, C4.4D4, C4⋊1D4, C22×D4, C2×C4○D4, C4×Dic3, Dic3⋊C4, D6⋊C4, C6.D4, C6.D4, C3×C22⋊C4, C3×C22⋊C4, C2×Dic6, S3×C2×C4, C2×D12, D4⋊2S3, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C2×C3⋊D4, C6×D4, C6×D4, S3×C23, C23×C6, C22.29C24, C23.16D6, D6⋊D4, Dic3⋊D4, C23.11D6, C23⋊2D6, C23.14D6, C12⋊3D4, C24⋊4S3, C3×C22≀C2, C2×D4⋊2S3, C22×C3⋊D4, C24.45D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C22×S3, C22×D4, 2+ 1+4, S3×D4, S3×C23, C22.29C24, C2×S3×D4, D4⋊6D6, C24.45D6
(2 32)(4 34)(6 36)(8 18)(10 14)(12 16)(20 40)(22 42)(24 38)(26 48)(28 44)(30 46)
(1 17)(2 44)(3 13)(4 46)(5 15)(6 48)(7 31)(8 24)(9 33)(10 20)(11 35)(12 22)(14 40)(16 42)(18 38)(19 29)(21 25)(23 27)(26 36)(28 32)(30 34)(37 43)(39 45)(41 47)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 17)(8 18)(9 13)(10 14)(11 15)(12 16)(19 39)(20 40)(21 41)(22 42)(23 37)(24 38)(25 47)(26 48)(27 43)(28 44)(29 45)(30 46)
(1 37)(2 38)(3 39)(4 40)(5 41)(6 42)(7 27)(8 28)(9 29)(10 30)(11 25)(12 26)(13 45)(14 46)(15 47)(16 48)(17 43)(18 44)(19 33)(20 34)(21 35)(22 36)(23 31)(24 32)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6 37 42)(2 41 38 5)(3 4 39 40)(7 16 27 48)(8 47 28 15)(9 14 29 46)(10 45 30 13)(11 18 25 44)(12 43 26 17)(19 20 33 34)(21 24 35 32)(22 31 36 23)
G:=sub<Sym(48)| (2,32)(4,34)(6,36)(8,18)(10,14)(12,16)(20,40)(22,42)(24,38)(26,48)(28,44)(30,46), (1,17)(2,44)(3,13)(4,46)(5,15)(6,48)(7,31)(8,24)(9,33)(10,20)(11,35)(12,22)(14,40)(16,42)(18,38)(19,29)(21,25)(23,27)(26,36)(28,32)(30,34)(37,43)(39,45)(41,47), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,17)(8,18)(9,13)(10,14)(11,15)(12,16)(19,39)(20,40)(21,41)(22,42)(23,37)(24,38)(25,47)(26,48)(27,43)(28,44)(29,45)(30,46), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,45)(14,46)(15,47)(16,48)(17,43)(18,44)(19,33)(20,34)(21,35)(22,36)(23,31)(24,32), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,16,27,48)(8,47,28,15)(9,14,29,46)(10,45,30,13)(11,18,25,44)(12,43,26,17)(19,20,33,34)(21,24,35,32)(22,31,36,23)>;
G:=Group( (2,32)(4,34)(6,36)(8,18)(10,14)(12,16)(20,40)(22,42)(24,38)(26,48)(28,44)(30,46), (1,17)(2,44)(3,13)(4,46)(5,15)(6,48)(7,31)(8,24)(9,33)(10,20)(11,35)(12,22)(14,40)(16,42)(18,38)(19,29)(21,25)(23,27)(26,36)(28,32)(30,34)(37,43)(39,45)(41,47), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,17)(8,18)(9,13)(10,14)(11,15)(12,16)(19,39)(20,40)(21,41)(22,42)(23,37)(24,38)(25,47)(26,48)(27,43)(28,44)(29,45)(30,46), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,45)(14,46)(15,47)(16,48)(17,43)(18,44)(19,33)(20,34)(21,35)(22,36)(23,31)(24,32), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,16,27,48)(8,47,28,15)(9,14,29,46)(10,45,30,13)(11,18,25,44)(12,43,26,17)(19,20,33,34)(21,24,35,32)(22,31,36,23) );
G=PermutationGroup([[(2,32),(4,34),(6,36),(8,18),(10,14),(12,16),(20,40),(22,42),(24,38),(26,48),(28,44),(30,46)], [(1,17),(2,44),(3,13),(4,46),(5,15),(6,48),(7,31),(8,24),(9,33),(10,20),(11,35),(12,22),(14,40),(16,42),(18,38),(19,29),(21,25),(23,27),(26,36),(28,32),(30,34),(37,43),(39,45),(41,47)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,17),(8,18),(9,13),(10,14),(11,15),(12,16),(19,39),(20,40),(21,41),(22,42),(23,37),(24,38),(25,47),(26,48),(27,43),(28,44),(29,45),(30,46)], [(1,37),(2,38),(3,39),(4,40),(5,41),(6,42),(7,27),(8,28),(9,29),(10,30),(11,25),(12,26),(13,45),(14,46),(15,47),(16,48),(17,43),(18,44),(19,33),(20,34),(21,35),(22,36),(23,31),(24,32)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6,37,42),(2,41,38,5),(3,4,39,40),(7,16,27,48),(8,47,28,15),(9,14,29,46),(10,45,30,13),(11,18,25,44),(12,43,26,17),(19,20,33,34),(21,24,35,32),(22,31,36,23)]])
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | 6B | 6C | 6D | ··· | 6I | 6J | 12A | 12B | 12C |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 12 | 12 | 12 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | 2+ 1+4 | S3×D4 | D4⋊6D6 |
kernel | C24.45D6 | C23.16D6 | D6⋊D4 | Dic3⋊D4 | C23.11D6 | C23⋊2D6 | C23.14D6 | C12⋊3D4 | C24⋊4S3 | C3×C22≀C2 | C2×D4⋊2S3 | C22×C3⋊D4 | C22≀C2 | C2×Dic3 | C22⋊C4 | C2×D4 | C24 | C6 | C22 | C2 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 4 | 3 | 3 | 1 | 2 | 2 | 4 |
Matrix representation of C24.45D6 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 9 | 2 | 9 |
0 | 0 | 4 | 11 | 4 | 11 |
0 | 0 | 0 | 0 | 11 | 4 |
0 | 0 | 0 | 0 | 9 | 2 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 1 |
0 | 0 | 11 | 2 | 12 | 1 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 12 | 0 |
0 | 0 | 12 | 1 | 12 | 1 |
0 | 0 | 2 | 0 | 1 | 0 |
0 | 0 | 2 | 11 | 1 | 12 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,12,0,0,0,0,1,0,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,2,4,0,0,0,0,9,11,0,0,0,0,2,4,11,9,0,0,9,11,4,2],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,11,0,0,12,12,2,2,0,0,0,0,0,12,0,0,0,0,1,1],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,12,12,2,2,0,0,0,1,0,11,0,0,12,12,1,1,0,0,0,1,0,12] >;
C24.45D6 in GAP, Magma, Sage, TeX
C_2^4._{45}D_6
% in TeX
G:=Group("C2^4.45D6");
// GroupNames label
G:=SmallGroup(192,1151);
// by ID
G=gap.SmallGroup(192,1151);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,219,675,297,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=1,f^2=d,a*b=b*a,e*a*e^-1=f*a*f^-1=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^-1>;
// generators/relations